Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
2.
Topics in Antiviral Medicine ; 30(1 SUPPL):116-117, 2022.
Article in English | EMBASE | ID: covidwho-1881009

ABSTRACT

Background: SARS-CoV-2 induces cytokine response dysregulation and immune dysfunction. What remains unclear is how cytokine signaling shapes immune responses during early SARS-CoV-2 infection when adaptive immunity is developing. Our goal is to identify immune pathways that shape the early development of adaptive immune responses in COVID-19 patients. We performed paired single-cell transcriptomic and epigenomic profiling at two time-points of early SARS-CoV-2 infection to determine immune signatures of acute infection and epigenetic drivers that underpin immune response dynamics. Methods: PBMC samples were collected from four moderate to severe COVID-19 patients at two early time-points (n = 3 for Week 1 and n = 3 for Week 2 after symptom onset, including 2 participants having paired blood sampling at both time points) and from two healthy controls (n = 2). Using paired scRNA-Seq and scATAC-Seq, we captured transcriptomic and epigenomic profiles in the same single cells to identify chromatin accessibility changes as a potential mechanism for the surge and decline of immune responses elicited during acute SARS-CoV-2 infection. Using bioinformatic approaches, we identified heterogeneous immune cell populations, modeled cell differentiation trajectories, determined dysregulated immune pathways through gene set enrichment analysis, and connected chromatin co-accessible landscapes. Results: We captured transcriptomic and epigenomic profiles of 43,726 single cells and identified paired transcriptional and epigenetic landscapes in six major immune cell types: CD4+ T cells, CD8+ T cells, B cells, dendritic cells, monocytes, and NK cells. We found that early SARS-CoV-2 infection induced a surge in IL-2, IL-6, IFN-α, IFN-γ, TNF-α, and NF-κB responses at Week 1 that declined at Week 2 in adaptive immune cells (CD4+ T, CD8+ T, and B cells). In contrast, TGF-β responses surged early at Week 1 and continued to increase at Week 2 in these cells. In B cells and plasmablasts, we found early surges of IGHA1 (encoding IgA heavy chain) and SOX4 (an essential transcription factor for B cell development) expressions that correlated with expression of SMAD-dependent TGF-β signaling pathway. Further, we found a notable increase in chromatin accessibility at the SMAD binding regulatory element 150 kb upstream of SOX4 in B cells of infected patients. Conclusion: Our data suggest a significant increase in TGF-β activity that instructs dynamic B cell-associated protective immunity during early SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL